The Stability of Short-Period Extrasolar Giant Planets
نویسنده
چکیده
A three-dimensional coupled thermosphere-ionosphere model for extrasolar giant planets (EXOTIM) has been developed. This is the first such model reported in the literature. This thesis contains an extensive description of the model and the methods adopted in modelling the different physical processes expected in the upper atmospheres and ionospheres of extrasolar giant planets. Modelling the upper atmosphere is important because the stability of the atmosphere against thermal evaporation is controlled by the conditions in the thermosphere. The thermosphere is heated by the absorption of EUV and X ray (XUV) radiation emitted by the host star. The radiation also ionises the neutral species in the upper atmosphere, which is expected to be composed mainly of molecular and atomic hydrogen, and atomic helium. Ionisation and subsequent photochemistry leads to the formation of the H, H2 , H + 3 , and He ions (and small quantities of HeH). H3 emits strongly in the infrared and may act as a significant coolant in gas giant thermospheres. Assuming photochemical equilibrium, the absorption of XUV radiation and ion photochemistry were modelled in a self-consistent fashion. The 3D model can also simulate strong winds affecting the upper atmosphere, and account for both advection and diffusion of the neutral species around the planet. The results indicate that within 1.0 AU from a solar-type host star, the upper atmospheres of Jupiter-type EGPs can be substantially cooler and more stable than implied by studies that ignore the possibility of radiative (H3 ) cooling. In this context, a limiting distance, or a stability limit, was identified for such EGPs that depends on the composition of the upper atmosphere and ionosphere, and within which the atmospheres of the planets undergo hydrodynamic escape. Under restricted conditions, this limit is located around 0.15 AU from a Sun-like host star. The model was also used to simulate a newly found transiting planet HD17156b, which orbits its host star on a highly eccentric orbit.
منابع مشابه
GMRT Low Frequency Observations of Extrasolar Planetary Systems
Extrasolar planets are expected to emit detectable low frequency radio emission. In this paper we present results from new low frequency observations of two extrasolar planetary systems (Epsilon Eridani and HD128311) taken at 150 MHz with the Giant Metrewave Radio Telescope (GMRT). These two systems have been chosen because the stars are young (with ages < 1 Gyr) and are likely to have strong s...
متن کاملOn the Mass-Period Correlation of the Extrasolar Planets
We report on a possible correlation between the masses and periods of the extrasolar planets, manifested as a paucity of massive planets with short orbital periods. Monte-Carlo simulations show the effect is significant, and is not solely due to an observational selection effect. We also show the effect is stronger than the one already implied by published models that assumed independent powerl...
متن کاملThe Stability and Prospects of the Detection of Terrestrial/habitable Planets in Multiplanet and Multiple Star Systems
Given the tendency of planets to form in multiples, and the observational evidence in support of the existence of potential planet-hosting stars in binaries or clusters, it is expected that extrasolar terrestrial planes are more likely to be found in multiple body systems. This paper discusses the prospects of the detection of terrestrial/habitable planets in multibody systems by presenting the...
متن کاملA stability catalogue of the habitable zones in extrasolar planetary systems
In the near future there will be launched space missions (e.g. COROT, KEPLER), designed to detect Earth-like extrasolar planets. The orbital elements of these (still hypothetic) planets will contain some uncertainties, that can only be eliminated by careful dynamical investigations of the hosting planetary systems. The proportion of extrasolar planetary systems with one known giant planet is hi...
متن کاملOrigins of Eccentric Extrasolar Planets: Testing the Planet–planet Scattering Model
Any planetary system with two or more giant planets may become dynamically unstable, leading to collisions or ejections through strong planet–planet scattering. Following an ejection, the other planet is left in a highly eccentric orbit. Previous studies for simple initial configurations with two equalmass planets revealed two discrepancies between the results of numerical simulations and the o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008